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1. Introduction and outline

The study of strings and D-branes on Calabi-Yau spaces is a remarkably rich area. These

string compactifications are interesting for phenomenological reasons (in the heterotic string

version they come closest to realistic particle spectra; if D-branes are added to the type II

version, they lead to N = 1 low-energy theories), as well as for mathematical reasons: In the

1980s, string theorists conjectured the existence of mirror symmetry for Calabi-Yau target

spaces, which has since been refined, by including D-branes, to what is often called the

homological mirror symmetry programme, involving derived categories of coherent sheaves

and the Fukaya category on the target manifolds [1].

These conjectures deal with the large-volume regime of string theories on CY target

spaces, but they were at least partially inspired by investigations of the stringy regime,
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where efficient descriptions in terms N = 2 world-sheet theories are available, most notably

in the form of Gepner models (orbifolds of tensor products of N = 2 superminimal models).

The connection to sigma-models on Calabi-Yau manifolds can be established via Landau-

Ginzburg models [2], the critical points of which have a description in terms of minimal

models.

Even though Gepner models [3] are defined in a somewhat abstract way, they are

rational conformal field theories, so it is possible to find symmetry-preserving boundary

conditions (i.e. D-branes) for them [4]. Using those boundary states and relating open string

Witten indices to geometrical intersection forms, the authors of [5] achieved a large-volume

interpretation of the CFT boundary conditions; see also [6 – 8] for further studies along

these lines. Since minimal models are closely related to N = 2 Landau-Ginzburg models,

the study of supersymmetric boundary conditions for the latter should from the outset be

relevant to the study of D-branes on Calabi-Yau manifolds. Special (linear) boundary con-

ditions for LG models were analysed in [9, 10] and also in [11]. Later, building on early work

by Warner [12], a connection between LG boundary conditions and factorisations of the

respective LG superpotential into two matrices was established in [13 – 15]. This was moti-

vated by an unpublished proposal due to M. Kontsevich, who suggested that topological B-

branes in LG models can be described by matrix factorisations of the respective LG poten-

tial, as discussed in great detail in the papers by Orlov [16] and Kapustin and Li [14, 15, 17].

From any N = 2 superconformal field theory one can obtain two 2-dimensional topo-

logical quantum field theories, the A- and the B-model, by performing the respective twists

and restricting the full Hilbert space to the cohomology of the BRST operator, which pro-

vides the ‘physical states’ of the topological model. This is also true for non-conformal

N = 2 models with unbroken R-symmetries, e.g. for LG models with affine target space

and quasi-homogeneous superpotentials (see e.g. [18]), which will be studied in this article.

In B-models of such LG theories on world-sheets with boundary, the matrix factors of

the bulk superpotential determine the boundary conditions, and in particular the boundary

BRST operators [13], therefore the spectrum of physical open string states.

Significantly, the main pieces of CFT data used by Brunner, Douglas et al. to extract

large-volume information in [5] were all taken from the ‘topological sector’ of the Gepner

model: In particular, the intersection form counts open string Ramond ground states

(with fermion number), so is precisely given by the Euler number of the cohomology of the

boundary BRST operator.

There are some important questions in string theory which are, at present, too hard to

answer directly in the CFT, but can be tackled in the simplified framework of topological

theories. In particular, one can study deformation away from the “Gepner point”, induced

by marginal bulk (and boundary) fields. The properties of topological D-branes in deformed

backgrounds can be encoded in topological D-brane superpotentials; a mainly perturbative

approach was presented in [19], recent progress towards computing exact superpotentials

has been made in [20, 21]. These superpotentials provide a very efficient description of

D-brane stability, and of characteristic CFT data like the chiral ring structure.

Thus it is of some interest to study which LG boundary conditions (given in the

form of matrix factorisations) correspond to the CFT boundary conditions that are known
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for Gepner models so far. All these are rational boundary states, and can be viewed as

permutation branes, as introduced in [22]: Whenever n of the minimal model constituents of

the Gepner model have the same level, there is a non-trivial action of the permutation group

Sn, which can be used to build boundary states that obey permutation gluing conditions,

i.e. where the left-moving super-Virasoro generators of the ith minimal model are glued to

the right-moving generators of the σ(i)th model for any permutation σ ∈ Sn.

Landau-Ginzburg matrix factorisations that reproduce the topological spectra of D-

branes in N = 2 minimal models are well-known [14, 15, 17, 23], and from these one can

form (orbifolds of) tensor products which reproduce the spectra of the simplest σ = id

‘permutation’ branes from [4], see e.g. [24] for a detailed discussion. The next-simplest

permutation branes involving length two cycles were analysed in [25], where the connection

between CFT boundary states and the ‘rank one matrix factorisations’ discussed in [24]

was established by computations of spectra and comparison of various other CFT and LG

results. In the present paper, we propose a correspondence between arbitrary permutation

branes and a special class of linear matrix factorisations, which were studied from a purely

algebraic point of view in [26]. A linear matrix factorisation is a decomposition of a

homogeneous (degree d) polynomial W (x1, . . . , xn) = α0 · · ·αd−1 into d matrices, each

of which is linear in the xi. Grouping some αi together, one obtains two-term matrix

factorisations W = p0p1. The general construction we propose covers the cases discussed

before (trivial permutation or cycles of at most length two), but it necessarily involves

higher rank matrix factors as soon as the permutation has cycles of length three or more.

The evidence we present in support of the proposed correspondence is partly in the form

of computer-algebraic computations for explicit matrix factorisations, leading to topologi-

cal spectra (in particular to Witten indices) which are compared to results obtained in the

corresponding Gepner models; here we make extensive use of the package Macaulay2 [27].

In addition, we present a general derivation of the BRST cohomology for open strings

stretching between an arbitrary permutation brane and special σ = id branes (tensor

products of minimal model boundary conditions). Employing tools from homological al-

gebra a bit more ingeniously, it should be possible to extend this calculation to arbitrary

tensor product branes, but already the special cases considered here should be a sufficient

starting point to compute charges for arbitrary permutation branes.

The body of the paper starts with a review of the relation between matrix factorisations

and topological LG models; in particular, we spell out how the boundary BRST-cohomology

is encoded in Ext-groups. In section 3, we revisit boundary states in minimal models

and Gepner models and derive the topological open string spectra of the permutation

branes, which in particular yields the Witten index. The main new results are contained

in section 4: We first present linear matrix factorisations of Landau-Ginzburg potentials

W = xd
1 + . . . + xd

n in section 4.1, then formulate a conjecture which of these correspond

to the topological permutation branes from the third section. Sections 4.2 and 4.3 contain

evidence for this correspondence. Some homological algebra arguments and the Macaulay2

codes together with results on the large-volume Chern characters for permutation branes

in the (k = 3)5-Gepner model describing a sigma-model on the quintic threefold in P4 are

collected in the appendix.
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Apart from open technical problems like finding simpler and more general proofs for

the correspondence between certain linear matrix factorisations and rational Gepner model

branes, there are some conceptual, and also some physical questions that would be inter-

esting to study in the future. For example, one could try to exploit the concrete Ext-groups

arising in our examples as a starting point of a computation of brane superpotentials. It

should also be interesting to compare our description of permutation LG branes to the one

given in [28], and to try and extend the present constructions to D-type modular invariants,

see [29] for some recent results.

On the whole, it is probably fair to say that the link between topological B-branes in

LG models and matrix factorisations on the one hand and boundary CFT on the other is,

as yet, rather loose, and that a deeper understanding of the connection would be desirable.

For instance, only part of the linear factorisations which are described in section 4.1 actually

correspond to permutation branes, and one wonders what CFT boundary conditions the

additional factorisations correspond to — if any. They might correspond to non-rational

(symmetry-breaking) Gepner boundary states, which so far are not at all under control,

and one may hope that matrix factorisations point towards new constructions of CFT

boundary conditions. For these and other reasons, it is definitely worth-while to aim at a

better understanding of the TFT-CFT interplay.

2. Landau-Ginzburg models and matrix factorisations

In this section, we briefly recall the relation between topological B-type branes in Landau-

Ginzburg models and matrix factorisations, and how tools from homological algebra can

be used to describe data of topological string theory.

An N = 2 supersymmetric Landau-Ginzburg model with target space Cn on a world-

sheet Σ is given by the bulk action

SΣ =

∫

Σ
d2x

[
∂µX̄j∂µXj − i ψ̄j

−

−→
∂+ψj

− − i ψ̄j
+

−→
∂−ψj

+

+
1

4
|∂W |2 +

1

2
Wijψ

i
+ψj

− +
1

2
W ijψ̄

i
−ψ̄j

+

]
(2.1)

where Xj , 1 ≤ j ≤ n, are bosonic fields, ψj
± left- and right-moving fermions, W (X) is the

Landau-Ginzburg potential, and Wij := ∂2W/∂Xi∂Xj . (The world-sheet carries the 2-d

version of the ‘mostly minus’ metric, i.e. ds2 = dt2 − dx2 in local coordinates.)

This action is invariant under the diagonal N = 2 supersymmetry transformation as

long as the world-sheet has no boundary; for ∂Σ 6= ∅, one adds boundary terms [12, 13]

S∂Σ,ψ =
i

4

∑

j

∫

∂Σ
dx0

[
θ̄jηj − η̄jθj

]
(2.2)

(with η := ψ−+ψ+, θ := ψ−−ψ+) as well as a term involving additional boundary fermions
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πα, and boundary potentials pα
i (X)

S∂Σ,π =
∑

α,j

∫

∂Σ
dx0

[
i π̄α∂0π

α − 1

2
p̄α
0 pα

0 − 1

2
p̄α
1 pα

1

+
1

2
πα(η̄j ∂j p̄

α
0 + iηj ∂jp

α
1 ) − 1

2
π̄α(ηj ∂jp

α
0 − iη̄j ∂j p̄

α
1 )

]
(2.3)

In order to preserve diagonal B-type N = 2 supersymmetry, the potentials pα
i (taken to be

polynomial in the Xj) have to satisfy the factorisation condition [13]
∑

α

pα
0 pα

1 = W

(up to a possible additive constant on the rhs, which will be set to zero in the following).

These potentials also determine the action of the (boundary contribution to the) BRST

operator,

Q X = 0 , Q π = p0 , Q π̄ = −ip1 .

In the topological field theory, physical open string states correspond to cohomology classes

of Q.

The space P on which the boundary fields act is graded by the fermion number,

P = P0 ⊕ P1, and using Clifford algebra anticommutation relations among the boundary

fermions

{πα, πβ} = { π̄α, π̄β} = 0 , {πα, π̄β} = δα,β

one can view Q as acting on boundary fields

Φ =

(
f00 f10

f01 f11

)
,

where fij : Pi → Pj , by graded commutator with the matrix

Θ =

(
0 p1

p0 0

)

(actually, for α = 1, . . . , r, Q is a 2r × 2r matrix).

It is straightforward to carry this over to strings stretching between two different branes

(where Φ : P → P̃ and QΦ = Θ Φ±Φ Θ̃). Furthermore, one can generalise this view of the

BRST cohomology by allowing for matrices p0, p1 of arbitrary size, see [30]. In this way,

while losing an explicit realisation through a Clifford algebra spanned by LG boundary

fermions πα, one makes contact to general matrix factorisations, which are pairs of square

matrices pi ∈ Mat(k,A) over the polynomial ring A = C[Xj ] such that

p0 p1 = W 1k .

Note that the physical content of a matrix factorisation is invariant under gauge transfor-

mations as formulated e.g. in [31, 32]: Two matrix factorisations (p0, p1) and (p′0, p
′
1) are

called equivalent if there are two invertible matrices U, V ∈ GL(k,A) with

U p0 V −1 = p′0 and V p1 U−1 = p′1 . (2.4)
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Therefore boundary conditions in topological LG models are indeed described by equiva-

lence classes of matrix factorisations. This will be understood implicitly in the following.

A simple way to obtain boundary conditions in certain LG models is by means of the

tensor product construction. Whenever the superpotential W is a sum of two polynomials in

different variables W (x1, . . . , xn) = W1(x1, . . . , xm)+W2(xm+1, . . . , xn) then the LG model

with superpotential W is indeed a tensor product of the two LG models with superpotentials

W1, W2. Therefore it must be possible in this situation to choose boundary conditions in

each of these models separately to obtain the “product” boundary condition in the LG

model with potential W . It turns out that the corresponding matrix factorisation is the

tensor product matrix factorisation: Let (p0, p1), (q0, q1) be matrix factorisations of W1

and W2, respectively, then the tensor product of these is given by the pair of matrices

r0 =

(
p0 ⊗ 1 −1 ⊗ q1

1 ⊗ q0 p1 ⊗ 1

)
, r1 =

(
p1 ⊗ 1 1 ⊗ q1

−1 ⊗ q0 p0 ⊗ 1

)
. (2.5)

As discussed in [24], (r0, r1) indeed gives rise to the open string spaces associated to tensor

product boundary conditions.

Invoking some basic notions from homological algebra, we can relate the spaces of

topological open string states, i.e. the cohomology of the BRST-operator Q, to certain

Ext-groups, which will prove useful for calculations later on. To this end, to a matrix

factorisation (p0, p1) of W of rank k, we associate the A-module P = coker(p1) and its

A-free resolution

0 −→ Ak p1−→ Ak −→ P −→ 0 . (2.6)

Given another matrix factorisation (p̃0, p̃1) of W of rank k̃, we obtain another module

P̃ = coker p̃1 in the same way. It is easy to see that the space of bosonic BRST-cocycles

associated to the pair of matrix factorisations (p0, p1) and (p̃0, p̃1) is isomorphic to the

space of chain maps between the respective resolutions (2.6). (A chain map between two

complexes (Cn, ∂n) and (C̃n, ∂̃n) is given by a sequences of maps fn : Cn → C̃n satisfying

fn−1 ∂n = ∂̃n fn.) If the two complexes are resolutions of C and C̃ respectively, one can

show that the space of homomorphisms Hom(C, C̃) is isomorphic to the space of chain maps

between the respective resolutions modulo the space of chain homotopies. (A homotopy

between two chain maps f and f ′ is a sequence of maps hn : Cn → C̃n+1 satisfying

fn − f ′
n = hn−1 ∂n + ∂̃n+1 hn.) However, one can check that the space of chain homotopies

between resolutions (2.6) is only a subspace of the image of the BRST-operator Q (see also

below), essentially because these resolutions are “too short”. Thus the bosonic part of the

BRST-cohomology in general is a quotient of HomA(P, P̃ ).

To obtain a better description of the BRST-cohomology, one can use the fact that due

to W P = 0, P is also a module over the ring R = A/(W ). Since p1p0 = W idAk = p0p1,

this module has the 2-periodic R-free resolution

· · · −→ Rk p1−→ Rk p0−→ Rk p1−→ Rk −→ P −→ 0 . (2.7)

This is a complex with ∂2n = p0 and ∂2n−1 = p1 for all n ≥ 1.

– 6 –
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Resolutions (whether periodic or not) can be used to calculate the groups ExtiR(P, ·).
Namely, for two modules M and N over a ring S, ExtiS(M,N) is defined to be the ith right

derived functor of the functor HomS(·, N), i.e. given a projective resolution · · · ∂3→ M2
∂2→

M1
∂1→ M0 → M → 0 of M , it can be calculated as the ith cohomology of the complex

0 −→ HomS(M0, N) −→ HomS(M1, N) −→ · · · , (2.8)

where the maps are induced by the chain maps ∂i in the resolution of M , namely fi ∈
HomS(Mi, N) 7→ fi ◦ ∂i+1 ∈ HomS(Mi+1, N).

A perhaps more concrete way to represent Ext-groups is (see e.g. [33]):

Ext0S(M,N) = HomS(M,N) , (2.9)

ExtiS(M,N) = coker
(
HomS(Mi−1, N) −→ HomS(Ki, N)

)
(2.10)

where Ki := im ∂i ⊂ Mi−1.

We can, however, use (2.8) directly to make contact with the cohomology of the BRST-

operator Q associated to matrix factorisations (p0, p1) and (p̃0, p̃1) of W: In even degree,

ker Q is isomorphic to the space of maps f00 ∈ HomR(Rk, R
ek) such that there exists

an f11 ∈ HomR(Rk, R
ek) with f00p1 = p̃1f11. Likewise, the even degree part of im Q is

isomorphic to HomR(Rk, R
ek) ◦ p0 + p̃1 ◦HomR(Rk, R

ek). Dividing out the second summand

from ker Q means that we can choose representatives for f00, which are zero on im p̃1. This

is achieved by passing from HomR(Rk, R
ek) to HomR(Rk, P̃ ) everywhere, and the condition

to belong to ker(Q) becomes f00 p1 = 0. In these representatives, the remaining part of

im(Q) is just given by HomR(Rk, P̃ ) ◦ p0 and one easily sees that ker(Q)/ im(Q) can be

obtained as the even cohomology of the complex (2.8) with M = P and N = P̃ . Thus, the

bosonic part of the BRST-cohomology is isomorphic to Ext2i
R(P, P̃ ) for i > 0. (Because of

the two-periodicity of the resolution (2.7), all these Ext-groups are isomorphic.)

To obtain the odd part of the BRST-cohomology, one can replace (p0, p1) by the

shifted matrix factorisation (−p1,−p0) in the discussion above, and one finds that the odd

BRST-cohomology is isomorphic to Ext2i−1
R (P, P̃ ) for i > 0.

Altogether, we arrive at the statement that the spaces of states of bosonic respectively

fermionic open strings in LG models with boundary conditions characterised by matrix

factorisations (p0, p1), (p̃0, p̃1) of W are given by

Heven(Q) = Ext2i
R(P, P̃ ) , Hodd(Q) = Ext2i−1

R (P, P̃ )

for i > 0, where P = coker p1 and P̃ = coker p̃1 are the R-modules obtained from the

respective matrix factorisations. Interchanging p0 and p1 amounts to switching to the anti-

brane of P and thus exchanging the notions of bosons and fermions in the open string

sectors.

This identification of BRST-cohomology with Ext-groups of the modules P , P̃ allows

us to exploit the machinery of homological algebra (in particular long exact sequences in

homology induced by short exact sequences of modules) in the analysis of topological open

strings in LG models.
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Let us remark at this point that the modules P , P̃ are rather special. Eisenbud [34]

(see also [35] for a slight generalisation) showed that all minimal free resolutions of finitely

generated modules over polynomial rings R = C[x1, . . . , xn]/(W ) become 2-periodic after at

most n steps. The modules for which a minimal free resolution is 2-periodic from the start

— exactly the ones induced by matrix factorisations — are the maximal Cohen-Macaulay

modules. These have been studied rather extensively in the mathematical literature.

One aspect of LG models which we have not mentioned up to now is that they carry an

action of a discrete group Γ. Indeed, if the superpotential W is homogeneous of degree d,

which we will assume throughout the paper, this group is given by Γ = Zd and it acts on the

bosonic fields by multiplication with a primitive dth root of unity ξ: Xi 7→ ξtXi for t ∈ Zd.

This also induces actions on the open string spaces, and the analysis of the respective

representations will be useful for the identification of matrix factorisations associated to

conformal boundary conditions.

In terms of matrix factorisations, this group action can be formulated as follows [24]:

The Zd-action on the Xi gives the ring R the structure of a Zd-graded ring (i.e. the ring

structure is compatible with the Zd-action), and one can consider Zd-graded modules over

it. The latter are modules P over R together with representations ρ : Zd → End(P ) of

Zd on them, which are compatible with the module structure. In particular, the maps p0

and p1 of a matrix factorisation p1 : P1ÀP0 : p0 can be taken as maps between Zd-

graded modules (P0, ρ0) and (P1, ρ1), which also have to be compatible with the grading,

i.e. ρ1(g) ◦ p0 = p0 ◦ ρ0(g) and ρ0(g) ◦ p1 = p1 ◦ ρ1(g) for all g ∈ Zd. Pictorially we write

this as
ρ1ª

P1

p1

À
p0

P0

ρ0

ª

. (2.11)

Such graded matrix factorisations then give rise to Zd-graded Ext-groups, whose gradings

specify the corresponding actions on the corresponding open strings states.

Incorporation of the Zd-action not only provides finer information about the boundary

conditions in LG models, namely the respective Zd-representations on the open string

Hilbert spaces, but also allows to carry the treatment of boundary conditions in LG

models over to boundary conditions in LG-orbifolds with orbifold group Zd. The effect

of the orbifolding on the LG model is that the respective open string sectors are pro-

jected onto Zd-invariant subspaces. In terms of matrix factorisations this means that the

space of open strings in the LG orbifold model is given by the mod-d-degree-0 parts of

the Ext-groups describing the corresponding spaces of open strings in the underlying LG

model.

LG orbifolds are relevant because of their relation to non-linear sigma models: The

Zd-orbifold of a LG model with homogeneous superpotential W of degree d in n variables

corresponds to a non-linear sigma model defined on the hypersurface X = {W = 0} ⊂ Pn−1

in projective space [2], as long as X is a Calabi-Yau manifold, which in the situation

considered here is the case if n = d. The Zd-action in the LG model appears here as a

“remainder” of the C∗-action divided out to obtain the projective hypersurface. In this

case one expects that B-type boundary conditions in the LG orbifold also have a geometric

– 8 –
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interpretation as B-type D-branes in the non-linear sigma model on X. The latter are

believed to be described by objects in the bounded derived category of coherent sheaves

Db(Coh(X)) on X.

3. LG boundary conditions at the conformal point

The critical behaviour of Landau-Ginzburg models with superpotential W = xk1+2
1 + . . . +

xkn+2
n can be described in terms of tensor products

Mk1,...,kn
= Mk1 ⊗ . . . ⊗Mkn

(3.1)

of N = 2 minimal models Mk with A-type modular invariants.

We are interested in B-type boundary conditions for those tensor product theories

that preserve the N = 2 supersymmetries of each of the minimal model, i.e. satisfy gluing

conditions for all of the N = 2 super-Virasoro algebras separately. Certainly, there are

the obvious ones, namely “tensor products” of boundary conditions of each of the Mki
.

However, if some of the factor models are isomorphic, i.e. ki = kj for some i 6= j, then

it is also possible to construct boundary conditions whose gluing conditions permute the

N = 2 super-Virasoro algebras of the respective models. Such boundary conditions are

called permutation boundary conditions.

For tensor products of rational CFTs with diagonal modular invariant there is a stan-

dard construction for the corresponding permutation boundary states [22]. This construc-

tion has to be slightly modified when dealing with B-type gluing automorphisms, with

respect to which minimal models are not diagonal. (A somewhat pedestrian approach to

tackle similar problems in constructing permutation branes for Gepner models, i.e. orb-

ifolded tensor products of minimal models, was employed in [22].)

The minimal models Mk are conformal field theories which are rational with re-

spect to the action of an N = 2-super Virasoro algebra at central charge ck = 3k
k+2 .

The bosonic part of this super Virasoro algebra can be realised as the coset W-algebra

(ŝu(2)k ⊕ û(1)4)/û(1)2k+4. In fact, the respective coset model can be obtained from the

Mk by a non-chiral GSO-projection, see e.g. [36].

The Hilbert space of the Mk can be decomposed into irreducible highest weight rep-

resentations of the respective super Virasoro algebra. It is convenient however, to consider

the decomposition into irreducible highest weight representations V[l,m,s] of its bosonic

subalgebra

Hk
∼=

⊕

[l,m,s]∈Ik

V[l,m,s] ⊗
(
V [l,m,s] ⊕ V [l,m,s+2]

)
, (3.2)

where the set of such representations is

Ik = {(l,m, s) | 0 ≤ l ≤ k , m ∈ Z2(k+2) , s ∈ Z4 , l + m + s ∈ 2Z}/ ∼ (3.3)

with the field identification (l,m, s) ∼ (k − l,m + k + 2, s + 2).

Apart from the alignment of R- and NS-sectors, the Hilbert space of the tensor product

model (3.1) is just given by the tensor product of the individual minimal model Hilbert
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spaces

Hk1,...,kn
=

⊕

[li,mi,si]∈Iki
si−sj∈2Z

n⊗

i=1

V[li,mi,si] ⊗
(
V [li,mi,si] ⊕ V [li,mi,si+2]

)
. (3.4)

The model possesses the symmetry group Zk+2×Z2 whose generators g ∈ Zk+2 and h ∈ Z2

act on V[l,m,s] ⊗ V [l,m,s] by multiplication with e
πi

k+2
(m+m) and e

πi
2

(s+s), respectively.

We would like to analyse boundary conditions whose gluing automorphisms permute

the N = 2 algebras of the Mki
in (3.1), and since only isomorphic N = 2 algebras can

be “glued together”, we will restrict ourselves to the case of tensor products of n identical

minimal models Mk, i.e. ki = k for all i.

We first review the construction for the trivial permutation σ = id, which is also

discussed in great detail in [37]. Already in this case, where the gluing conditions factorise

into n independent ones, the corresponding boundary states are not just tensor products

of single minimal model boundary states because of the sector alignment. Furthermore,

one has to take into account that a single minimal model is not diagonal with respect to

the B-type gluing automorphism.

3.1 Trivial permutation

The B-type gluing automorphism τB of the N = 2 superconformal algebra induces an

isomorphism V[l,m,s]
∼→ V[l,−m,−s] of the minimal model representations. Therefore a sector

V[l,m,s] ⊗ V [l,m,s] ⊂ Hk (3.5)

in a single minimal model gives rise to an Ishibashi state satisfying B-type gluing conditions

iff [l,m, s] = τB [l,m, s] = [l,−m,−s]. Thus, in a single minimal model there are Ishibashi

states

|[l, 0, s]〉〉B , for all [l, 0, s] ∈ Ik . (3.6)

Note however, that one can also introduce Ishibashi states |[l,m, s]〉〉B for [l,m, s] ∈ Ik

with m 6= 0 mod (k + 2), if one allows for twists with respect to the Zk+2-symmetry of the

model, cf. [36]. These additional Ishibashi states appear in the decomposition of twisted

boundary states, whose existence can be understood as follows: Since the boundary states

built from the Ishibashi states (3.6) are invariant under the group Zk+2, the latter also

acts on the respective open string sectors. Thus we can insert a Zk+2-generator in a trace

over an open sector, and by means of modular transformation this can be rewritten as an

overlap of twisted boundary states1; for more details about this point see e.g. [38]. With

1Even though these are not states in the Hilbert space of the original model, they can nevertheless be

used to describe the corresponding correlation functions.
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g being a generator of Zk+2, the g−t-twisted boundary states are given by

‖[L,M,S]〉〉B,t =
1√

k + 2

∑

a∈Zk+2

∑

[l,m,s]∈Ik

e
2πi
k+2

a(m−t) S[L,M,S],[l,m,s]√
SΩ,[l,m,s]

|[l,m, s]〉〉B

=
1√

k + 2

∑

a∈Zk+2

∑

[l,m,s]∈Ik

e−
2πi
k+2

at S[L,M+2a,S],[l,m,s]√
SΩ,[l,m,s]

|[l,m, s]〉〉B

=
√

k + 2
∑

[l,t,s]∈Ik

S[L,M,S],[l,t,s]√
SΩ,[l,t,s]

|[l, t, s]〉〉B , (3.7)

where in the last line it is summed over all l, s such that [l, t, s] ∈ Ik, and

S[L,M,S],[l,m,s] =
e−

iπ
2

Ss

√
2

e
iπ

k+2
Mm

√
k + 2

SL,l and (3.8)

SL,l =

√
2

k + 2
sin

(
π

k + 2
(L + 1)(l + 1)

)

are the modular S-matrices of the N = 2 minimal models and the ŝu(2)k-WZW models

respectively, and where Ω = [0, 0, 0] denotes the minimal model vacuum representation.

In an untwisted boundary state, all the twisted Ishibashi states are projected out, and

the label M determines the representations of Zk+2 on the open string Hilbert spaces. In

particular, B-type boundary states in minimal models are labelled by [L,M,S] ∈ Ik.

The spectra of open string states with corresponding boundary conditions can easily

be obtained from the overlaps of the respective boundary states. The bosonic part of open

string states with boundary conditions corresponding to ‖[L,M,S]〉〉B and ‖[L′,M ′, S′]〉〉B
is described by the overlap of ‖[L,M,S]〉〉B and ‖[L′,M ′, S′]〉〉B , whereas the fermionic part

of the spectrum is determined by the overlap of ‖[L,M,S]〉〉B with the boundary state

‖[L′,M ′, S′ + 2]〉〉B , which is obtained from ‖[L′,M ′, S′]〉〉B by reversing the sign of its RR-

part. Insertion of a power of the generator g of the symmetry group Zk+2 in the trace

over the open sector is achieved by considering the overlap of the corresponding twisted

boundary states. The calculation of the spectra is straightforward and one obtains

trHbos
[L′,M′,S′],[L,M,S]

(
gtqL0−

c
24

)
=−t,B〈〈[L′,M ′, S′]‖q 1

2
(L0+L0)−

c
24 ‖[L,M,S]〉〉B,−t

=
∑

[l,m,s]∈Ik
a∈Zk+2

N [l,m,s]
[L′,M ′,S′][L,M+2a,S] e

2πi
k+2

ta χ[l,m,s](q) (3.9)

where χ[l,m,s] are the characters and N the fusion rules of the minimal model.

Because of the sector alignment, one cannot obtain boundary conditions in tensor

products of minimal models just by tensoring the boundary conditions (3.7) of single min-

imal models. Instead one has to project the tensor products of minimal model boundary

states onto the contributions coming from Ishibashi states that are twisted with respect to
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the alignment group Zn−1
2 . The result can be written as

‖L1, . . . , Ln, S1, . . . , Sn,M =
∑

iMi〉〉idB,t (3.10)

= 2
1−n

2

∑

b2,...,bn∈Z2

‖[L1,M1, S1 + 2
∑

ibi]〉〉B,t ⊗
n⊗

i=2

‖[Li,Mi, Si − 2bi]〉〉B,t

=
(2k + 4)

n
2√

2

∑

[li,t,si]∈Ik
si−sj∈2Z

n∏

i=1

S[Li,Mi,Si][li,t,si]√
SΩ[li,t,si]

n⊗

i=1

|[li, t, si]〉〉B ,

where now t refers to the twist by g−t with g the generator of the diagonal Zk+2 ⊂ Zn
k+2

of the product of minimal model symmetry subgroups; as above, in the last line the sum

is understood to be taken over li, si such that [li, t, si] ∈ Ik. Note that the boundary state

(3.10) only depends on M =
∑

i Mi, which again determines the Zk+2-representations

in the open sectors. Namely, taking into account the form of the modular S-matrix

(3.8), we see that the boundary states depend on the M -labels only through a phase

e
iπt
k+2

(
P

i Mi) multiplying the t-twisted Ishibashi states. Using (3.9), the spectrum of open

strings with boundary conditions corresponding to ‖α〉〉 = ‖L1,...,Ln,S1,...,Sn,M=
∑

iMi〉〉idB and

‖α′〉〉 = ‖L′
1,...,L′

n,S′
1,...,S′

n,M ′=
∑

iM
′
i〉〉idB can be easily determined

trHbos
α′α

(
gtqL0−

c
24

)
= −t〈〈α′‖q 1

2
(L0+L0)− c

24 ‖α〉〉−t (3.11)

=
∑

ai∈Zk+2
bi∈Z2

∑

[li,mi,si]∈Ik

e
2πi
k+2

t
P

i ai

n∏

i=1

χ[li,mi,si](q)

×N [l1,m1,s1]

[L′
1,M ′

1,S′
1][L1,M1+2a1,S1+2

P
i bi]

n∏

i=2

N [li,mi,si]

[L′
i,M

′
i,S

′
i][Li,Mi+2ai,Si−2bi]

.

The respective fermionic spectrum can be obtained from the bosonic one by shifting an

odd number of S′
i by 2. Formula (3.11) gives the expected spectrum for tensor product

boundary conditions. Namely, the sector alignment, i.e. the sum over the bi, ensures that

the corresponding space of bosonic (fermionic) open strings is given by the tensor product

of all combinations of bosonic and an even (odd) number of fermionic open string spaces

of the individual models.

After this short review of product boundary conditions in tensor products of minimal

models let us return to permutation boundary conditions.

3.2 Non-trivial permutation

In this section we will present B-type boundary conditions in M⊗n
k which preserve all the

individual N = 2 algebras of the minimal models in a different manner. Namely we impose

gluing conditions which relate the holomorphic algebra of the ith minimal model to the

antiholomorphic one of the σ(i)th minimal model, where σ ∈ Sn is a permutation.

Since every permutation can be written as a product of cyclic permutations, we restrict

our discussion to cyclic permutations σ : (1, . . . , n) 7→ (2, . . . , n, 1) of the n factor models.

The treatment can easily be carried over to the general situation.
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To construct boundary states satisfying σ-permuted B-type gluing conditions, we first

of all determine the respective Ishibashi states. The t-twisted sector

V[l1,m1,s1] ⊗ . . . ⊗ V[ln,mn,sn] ⊗ V [l1,m1−2t,s1] ⊗ . . . ⊗ V [ln,mn−2t,sn] ⊂ Ht
k,...,k (3.12)

gives rise to an Ishibashi state with respect to the σ-permuted B-type gluing automorphism

iff

[li,mi, si] = τB[li+1,mi+1 − 2t, si+1] = [li+1,−mi+1 + 2t,−si+1] (3.13)

for all i ∈ Zn. We can choose representatives so that this condition becomes

li = l1 , m2i+1 = m , m2i = 2t − m , si = −si+1 for all i . (3.14)

For n odd, we obtain mi = t for all i, whereas for n even, there are more solutions, namely

m2i+1 = m for all i and m2i = 2t−m. Thus, for odd n there are t-twisted Ishibashi states

|[l, t, s1, . . . , sn]〉〉σ for all [l, t, s1, . . . , sn] ∈ Ik,n , (3.15)

where Ik,n = {(l,m, s1, . . . , sn) | [l,m, si] ∈ Ik}/ ∼ with (l,m, s1, . . . , sn) ∼ (k − l,m + k +

2, s1 + 2, . . . , sn + 2). For even n on the other hand there exist t-twisted Ishibashi states

|[l,m, 2t − m, s1, . . . , sn]〉〉σ for all [l,m, s1, . . . , sn] ∈ Ik,n . (3.16)

Because of this difference between the case of B-type permutation boundary conditions

involving permutations of even and odd cycle length, we will treat them separately in the

following.

3.2.1 Odd cycle length

Our ansatz for the σ-permuted B-type boundary states is an adaption of the permutation

boundary states for diagonal CFTs [22] to our situation. We have to account for the

absence of untwisted Ishibashi states with m 6= 0, which can be done similarly to the

case of a single minimal model discussed above. Furthermore we have to take care of the

fact that the minimal models are non-diagonal. The alignment condition is automatically

satisfied for σ-permuted gluing conditions. We define t-twisted boundary states as follows

‖L,M,S1, . . . , Sn〉〉σB,t (3.17)

:=
1√

k + 2

∑

a∈Zk+2

∑

[l,m,s1]∈Ik
si−s1∈2Z

e−
2πi
k+2

at S[L,M+2a,S1][l,m,s1](
SΩ[l,m,s1]

)n
2

e−
iπ
2

P
i>1 Sisi

2
n−1

2

× |[l,m, s1, . . . , sn]〉〉σB

=
√

k + 2
∑

[l,t,s1]∈Ik
si−s1∈2Z

S[L,M,S1][l,t,s1](
SΩ[l,t,s1]

)n
2

e−
iπ
2

P
i>1 Sisi

2
n−1

2

|[l, t, s1, . . . , sn]〉〉σB

Using standard facts about modular S-matrices, it is easy to obtain the spectrum of open

strings between two such permutation boundary states on both sides. The computation
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closely parallels the situation of permutation boundary conditions in diagonal CFTs [22],

one merely has to take into account the additional Ishibashi states with si 6= sj and

the corresponding phases e−
iπ
2

P
i>1 Sisi in the boundary states. To deal with them, we

parametrise the [l,m, s1, . . . , sn] ∈ Ik,n as [l,m, s1, s1 + b2, . . . , sn + bn], where [l,m, s1]

runs over Ik and bi ∈ Z2 are arbitrary. The sum over b2, . . . , bn ∈ Z2 is independent

of s1, and the result for the open string spectrum between two σ-permutation branes

‖α〉〉 = ‖L,M,S1,...,Sn〉〉σB and ‖α′〉〉 = ‖L′,M ′,S′
1,...,S′

n〉〉σB is

trHbos
α′α

(
gtqL0−

c
24

)
= −t〈〈α′‖q 1

2
(L0+L0)− c

24 ‖α〉〉−t (3.18)

=
∑

a∈Zk+2

∑

[li,mi,si]∈Ik

e
2πi
k+2

at
n∏

i=1

χ[li,mi,si](q)

×
n∏

i=2

δ
(2)
si,S′

i−Si
N [l1,m1,s1]∗...∗[ln,mn,sn]

[L′,M ′,
P

iS
′
i][L,M+2a,

P
iSi]

,

where ∗ denotes fusion of minimal model representations; the fusion rules N are extended

linearly to sums of representations. Shifting an odd number of S-labels of one of the

boundary states by 2 yields the fermionic spectrum.

Apart from the open sectors with σ-permuted B-type boundary conditions on both

sides, we are also interested in the ones with σ-permuted boundary conditions on one and

non-permuted boundary conditions on the other side. For this, we first of all need the

overlaps between the corresponding t-twisted Ishibashi states:

B〈〈[l1′, t′, s1
′]| ⊗ . . . ⊗ B〈〈[ln′, t′, sn

′]|q 1
2
(L0+L0)− c

24 |[l, t, s1, . . . , sn]〉〉σB (3.19)

=

n∏

i=1

(
δli′,l δsi

′,s δsi,s

)
trV⊗n

l,t,s

(
σqL0−

c
24

)
,

where σ acts on the tensor product space by permuting the factors. As was noted in [25]

for the case n = 2, this trace equals the character χ[l,t,s](q
n) only up to a phase due to the

(not necessarily bosonic) statistics of the respective states. More precisely

χ[l,t,s](q
n) = trV⊗n

l,t,s

(
(−1)(1−n)F σqL0−

c
24

)
= e(n−1)( πit

k+2
−πis

2 )trV⊗n
l,t,s

(
σqL0−

c
24

)
. (3.20)

Here, (−1)F = e2πiJ0 , where J0 denotes the zero mode of the U(1)-current from the N = 2

algebra. Using this and the modular transformation properties of the minimal model

characters

χ[l,t,s]((Sq)n) =
∑

[l′,t′,s′]∈Ik

S[l,t,s][l′,t′,s′] χ[l′,t′,s′]

(
q

1
n

)
, (3.21)

the open string spectrum between a σ-permuted boundary state ‖α〉〉 = ‖L,M,S1,...,Sn〉〉σB
on one side and a non-permuted tensor product boundary state
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‖α′〉〉 = ‖L′
1,...,L′

n,S′
1,...,S′

n,M ′=
P

iM
′
i〉〉idB on the other, follows as

trHbos
α′α

(
gtqL0−

c
24

)
= −t〈〈α′‖q 1

2
(L0+L0)− c

24 ‖α〉〉−t (3.22)

= (k + 2)
n−1

2

∑

[l,m,s]∈Ik

∑

a∈Zk+2

e
2πi
k+2

atχ[l,m,s]

(
q

1
n

)

×N [l,m,s]

[L′
1,M ′

1,S′
1]∗...∗[L

′
n,M ′

1,S′
1][L,M+2a+(1−n),

P
iSi+(1−n)]

.

Note that the effect of the relative phase between twisted characters and σ-twisted traces

in (3.20) on the open spectra (3.22) is a shift of coset-W-algebra representations [l,m, s] 7→
[l,m + (1 − n), s + (1 − n)] in the open channel.

3.2.2 Even cycle length

For even cycle length n, we define the t-twisted boundary states

‖L,M,T, S1, . . . , Sn〉〉σB,t :=
∑

[l,m,s1,...,sn]∈Ik,n

e
2πi
k+2

Tt S[L,M−2T,S1],[l,m,s1](
SΩ,[l,m,s1]

)n
2

(3.23)

×e−
iπ
2

Pn
i=2 Sisi

√
2

n−1 |[l,m, 2t − m, s1, . . . , sn]〉〉σB ;

see also [25] for the special case n = 2. It is now straightforward to calculate the open string

spectrum between two such permutation boundary states. For ‖α〉〉 = ‖L,M,T,S1,...,Sn〉〉σB and

‖α′〉〉 = ‖L′,M ′,T ′,S′
1,...,S′

n〉〉σB the result is

trHbos
α′α

(
gtqL0−

c
24

)
= −t〈〈α′‖q 1

2
(L0+L0)− c

24 ‖α〉〉−t (3.24)

=
∑

[li,mi,si]∈Ik

e−
2πi
k+2

t(T−T ′+
P

i even mi)
n∏

i=1

χ[li,(−1)i+1mi,si](q)

×
n∏

i=2

δ
(2)
si,S′

i−Si
N [l1,m1,s1]∗...∗[ln,mn,sn]

[L′,M ′−2T ′,
P

iS
′
i][L,M−2T,

P
iSi]

.

As in the case of odd n, the shift by 2 of an odd number of S-labels in one of the boundary

states produces the corresponding fermionic spectrum.

The open string spectrum for σ-permutation boundary conditions ‖α〉〉 =

‖L,M,T,S1,...,Sn〉〉σB at one end and and tensor product boundary conditions ‖α′〉〉 =

‖L′
1,...,L′

n,S′
1,...,S′

n,M ′=
P

iM
′
i〉〉idB at the other can be calculated to be

trHbos
α′α

(
gtqL0−

c
24

)
= −t〈〈α′‖q 1

2
(L0+L0)−

c
24 ‖α〉〉−t (3.25)

= (k + 2)
n−2

2

∑

[l,m,s]∈Ik

∑

a∈Zk+2

e
2πi
k+2

t(a−T )χ[l,m,s]

(
q

1
n

)

×N [l,m,s]

[L′
1,M ′

1,S′
1]∗...∗[L

′
n,M ′

1,S′
1][L,M−2T+2a+(1−n),

P
iSi+(1−n)]

.

As for the case of odd n, the phase in (3.20) affects the open spectra by a shift in repre-

sentations [l,m, s] 7→ [l,m + (1 − n), s + (1 − n)].
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3.3 Topological spectra

The topological open spectra associated to the permutation boundary conditions described

in section 3.2 can be read off from the full CFT spectra, by extracting the chiral primary

contributions. In a single minimal model Mk, chiral primary fields are given by the highest

weight vectors of the representations [l, l, 0] ∈ Ik, in tensor products of minimal models by

tensor products of those. Thus, in the situation when the open sectors carry a representa-

tion of the sum of all the N = 2 algebras of the individual minimal models, the topological

spectra can easily be extracted. Otherwise one has much less control of the representation

theory and the identification of chiral primaries can be quite difficult. As far as permu-

tation boundary conditions are concerned, this more complicated situation only occurs in

sectors of open strings with different permutation gluing conditions, cf. eqs. (3.22), (3.25).

These cases will be treated at the end of this section and we start with the cases where the

gluing conditions on both sides are twisted by the same permutation.

From now on, we will restrict our considerations to boundary states where all S-labels

are even. (S odd merely corresponds to the opposite choice of spin structure.) For a single

minimal model, the boundary spectra (3.9) then simplify to

trHbos
[L′,M′,S′],[L,M,S]

(
gtqL0−

c
24

)
=

∑

[l,m,0]∈Ik

e
πit
k+2

(m−M+M ′)χ[l,m,0](q) (3.26)

×
(
N l

L′L δ
(4)
S−S′,0 + (−1)tN k−l

L′L δ
(4)
S−S′,2

)
,

where

N j
L′L =

{
1 if |L − L′| ≤ j ≤ min(L + L′, 2k − L − L′) and L + L′ + j ∈ 2Z

0 otherwise

denotes the ŝu(2)k-fusion rules.

From (3.26) the topological open spectra can be easily read off. There are bosonic topo-

logical open strings with boundary conditions corresponding to ‖[L,M, 0]〉〉B and

‖[L′,M ′, 0]〉〉B for every l ∈ {0, . . . , k} such that N l
L′L = 1, i.e. for all l ∈ {|L−L′|, |L−L′|+

2, . . . ,min(L + L′, 2k − L − L′)}. Their Zk+2-charges are given by 1
2(l − M + M ′). Like-

wise, there are fermionic topological open strings with these boundary conditions for every

l ∈ {0, . . . , k} such that N k−l
L′L = 1, i.e. for all l ∈ k − {|L − L′|, |L − L′| + 2, . . . ,min(L +

L′, 2k−L−L′)}. Their Zk+2-charges are given by 1
2(l−M + M ′ + k + 2). (As expected, a

shift by 2 in the M or M ′ shifts the Zk+2-charges by 1.) Thus, the bosonic and fermionic

topological Hilbert spaces are given by

H0 (‖[L′,M ′,0]〉〉B , ‖[L,M,0]〉〉B) ∼=
min(L+L′,2k−L−L′)⊕

l=|L−L′|

l+L+L′∈2Z

C 1
2
(l−M+M ′) , (3.27)

H1 (‖[L′,M ′,0]〉〉B , ‖[L,M,0]〉〉B) ∼=
min(L+L′,2k−L−L′)⊕

l=|L−L′|

l+L+L′∈2Z

C 1
2
(−l−M+M ′−2) , (3.28)
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where the subscript m of Cm denotes the respective Zk+2-representation. In particular

dimH0 (‖[L′,M ′,0]〉〉B , ‖[L,M,0]〉〉B) = dimH1 (‖[L′,M ′,0]〉〉B , ‖[L,M,0]〉〉B)

= min(L,L′, k − L, k − L′) + 1 .

All this information can be summarised in the bosonic and fermionic topological partition

functions of a single minimal model

trH0(‖[L′,M ′,0]〉〉B ,‖[L,M,0]〉〉B)(g
t) =

∑

l∈{0,...,k}

N l
L′L e

2πit
k+2

1
2
(l−M+M ′) , (3.29)

trH1(‖[L′,M ′,0]〉〉B ,‖[L,M,0]〉〉B)(g
t) =

∑

l∈{0,...,k}

N k−l
L′L e

2πit
k+2

1
2
(l−M+M ′+k+2) . (3.30)

For tensor product boundary states ‖α〉〉 = ‖L1,...,Ln,S1=0,...,Sn=0,M=
∑

iMi〉〉idB and ‖α′〉〉 =

‖L′
1,...,L′

n,S′
1=0,...,S′

n=0,M ′=
∑

iM
′
i〉〉idB we obtain from (3.11)

Hb
(
‖α′〉〉, ‖α〉〉

)
=

⊕

b1,...,bn∈Z2
b+

P
i bi∈2Z

⊗

i

Hbi (‖[L′
i,M

′
i,0]〉〉B , ‖[Li,Mi,0]〉〉B) . (3.31)

For odd cycle length permutation boundary states ‖α〉〉 = ‖L,M,Si=0〉〉σB and ‖α′〉〉 =

‖L′,M ′,S′
i=0〉〉σB the topological partition functions follow from (3.18)

trH0(‖α′〉〉,‖α〉〉)(g
t) =

∑

li∈{0,...,k}

N l1∗...∗ln
L′L e

2πit
k+2

1
2(

P
i li−M+M ′) , (3.32)

trH1(‖α′〉〉,‖α〉〉)(g
t) =

∑

li∈{0,...,k}

N
(k−l1)∗...∗ln

L′L e
2πit
k+2

1
2(

P
i li−M+M ′+k+2) . (3.33)

For even cycle length permutation boundary states ‖α〉〉 = ‖L,M,T,Si=0〉〉σB and ‖α′〉〉 =

‖L′,M ′,T ′,S′
i=0〉〉σB they can be extracted from (3.24) to be

trH0(‖α′〉〉,‖α〉〉)(g
t) =

∑

li∈{0,...,k}

N l1∗...∗ln
L′L δ(2k+4)

M−M′−2(T−T ′),
P

i(−1)i+1li
e

πit
k+2 (

P

i li−M+M′) , (3.34)

trH1(‖α′〉〉,‖α〉〉)(g
t) =

∑

li∈{0,...,k}

N
(k−l1)∗...∗ln

L′L δ(2k+4)

M−M′−2(T−T ′),
P

i(−1)i+1li+k+2
e

πit
k+2 (

P

i li−M+M′). (3.35)

As alluded to above, the extraction of these topological spectra from the corresponding

CFT spectra heavily relied on the fact that chiral primary states in tensor products of

minimal models are tensor products of minimal model chiral primary states. The Hilbert

spaces of open strings satisfying boundary conditions with different permutations on both

sides however do not carry a representation of the tensor product of the minimal model

N = 2 algebras. Rather, they decompose into twisted representations of a Zn-orbifold

thereof, where Zn is generated by the permutation σ.

We can identify the chiral primaries amongst the highest weight vectors of the twisted

representations by their characteristic relation between conformal weight h and U(1)-

charges q, namely h = 1
2q (which holds in unitary theories). Conformal weight ĥ and
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U(1)-charge q̂ of the Zn-twisted representations with character χ[l,m,s](q
1
n ) can be expressed

in terms of the conformal weight h and U(1)-charge q of the respective representation with

character χ[l,m,s](q) in the “mother” theory as (for more details on cyclic orbifolds see

e.g. [39])

ĥ =
h

n
+

c

24

(
n − 1

n

)
, q̂ = q . (3.36)

The chiral primary condition ĥ = 1
2 q̂ can therefore be expressed in terms of h and q as

follows

h +
1 − n

2
q +

c

6

(
1 − n

2

)2

=
1

2

(
q +

c

3

(
1 − n

2

))
. (3.37)

This, however, is nothing else than the chiral primary condition for the representation

obtained from the original one after spectral flow Uη by η = 1−n
2 units. Namely, conformal

weight and U(1)-charge change under the spectral flow Uη as

h 7→ hη = h + ηq +
c

6
η2 , q 7→ qη = q +

c

3
η . (3.38)

The action of this spectral flow on representations is given by

U 1−n
2

[l,m, s] = [l,m − (1 − n), s − (1 − n)] . (3.39)

Therefore, a representation with twisted character χ[l,m,s](q
1
n ) is built on a chiral primary

highest weight state iff the minimal model representation [l,m−(1−n),s−(1−n)] is built on a

chiral primary.

Having managed to identify the chiral primaries in the twisted representations, it is

not difficult to extract the topological partition functions between permutation boundary

states ‖α〉〉 = ‖L,M,Si=0〉〉σB (for n odd) or ‖α〉〉 = ‖L,M,T,Si=0〉〉σB (for n even) and a tensor

production boundary state ‖α′〉〉 = ‖L′
1,...,L′

n,S′
i=0,M ′=

P
iM

′
i〉〉idB from the CFT-spectra2 (3.22)

trH0(‖α′〉〉,‖α〉〉)(g
t) = (k + 2)[

n−1
2 ]

∑

l∈{0,...,k}

N l
L′

1∗...∗L
′
nL e

2πit
k+2

1
2
(l−M+M ′) , (3.40)

trH1(‖α′〉〉,‖α〉〉)(g
t) = (k + 2)[

n−1
2 ]

∑

l∈{0,...,k}

N k−l
L′

1∗...∗L
′
nL

e
2πit
k+2

1
2
(l−M+M ′+k+2) , (3.41)

where [ · ] denotes the integer part.

3.4 Boundary states in Gepner models

In this section, we would like to recall briefly how to extract information about Gepner

model branes from the boundary states in tensor products of minimal models discussed

above.

Gepner models consist of orbifolds of tensor products (3.1) of N = 2 minimal models

coupled to some free external theory, where the orbifold construction implements the GSO-

projection of the internal part. The orbifold group is the cyclic group Γ = ZH , generated

2Note that the shift (3.39), which is used to identify chiral primaries among the twisted open CFT

states, is exactly opposite to the shift in the open spectra produced by the relative phases between twisted

characters and σ-twisted traces, cf. the end of section 3.2.
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by the product of the generators of the Zki+2-symmetry groups of the individual minimal

models. Hence, H = lcm(k1+2, . . . , kn+2). If the “Calabi-Yau condition”
∑n

i=1(ki+2)−1 =

1 is satisfied, then this model describes a string compactification on the hypersurface in

weighted projective space defined by the vanishing of the superpotential W = xk1+2
1 + . . .+

xkn+2
n .

Above, we constructed certain boundary states in tensor products of minimal models,

and there is a standard procedure of obtaining boundary conditions in orbifold models from

those of the original unorbifolded theories (see the remarks in section 3.1): Starting from

a boundary state in the original model which is invariant under the action of the orbifold

group Γ, one sums up all the states obtained from it by twisting with elements of Γ, then

divides by
√

|Γ| to ensure correct normalisation. Obviously this has the effect of projecting

the corresponding open string sectors to the trivial representations of the orbifold group.

In the preceding sections, we obtained such Γ-invariant boundary states in tensor prod-

ucts of minimal models, and we also presented all the twisted boundary states. Summing

up all these twisted components, one arrives at the internal parts of the respective bound-

ary states in Gepner models. From the Γ-twisted open partition functions in the tensor

products of minimal models determined in section 3.3, one can read off the respective open

sectors of the (internal part of the) Gepner model, simply by extracting the Γ-invariant

parts.

Boundary states in full Gepner models can be obtained as tensor product of boundary

states of the internal and the external theories respectively. However, the alignment of NS-

and R-sectors has to be ensured in this construction, intertwining the two factor states in

a non-trivial way. Nevertheless, certain “invariants” of boundary conditions, which only

depend on the RR- and the NSNS-part of the boundary states separately, factorise into

internal and external contributions. This is true in particular for the open string Witten

index

I(α′, α) = RR〈〈α′‖(−1)FLq
1
2
(L0+L0)− c

24 ‖α〉〉RR

= dimH0
(
‖α′〉〉, ‖α〉〉

)
− dimH1

(
‖α′〉〉, ‖α〉〉

)
,

where FL is the holomorphic fermion number on the bulk Hilbert space (see e.g. [5, 11]).

Therefore it makes sense to calculate I for the internal part of the Gepner model boundary

state alone, i.e. in the orbifold of the tensor products of minimal models.

This index can be calculated easily from the topological open partition functions for

tensor product bulk theories. One merely needs to identify the respective Γ-invariant parts

of the bosonic and fermionic topological Hilbert spaces and subtract their dimensions.

For example, the Witten index between the tensor product boundary state ‖α′〉〉 =

‖L′
i=0,S′

i=0,M ′〉〉idB and a permutation brane ‖α〉〉 = ‖L,M,Si=0〉〉σB for odd n or ‖α〉〉 =

‖L,M,T,Si=0〉〉σB for even n can be obtained by summing over t in eqs. (3.40), (3.41) and

dividing by |Γ| = k +2 (here assuming ki = k and also n = k +2 for notational simplicity).

In this way we arrive at

I(α′, α) = (k + 2)[
n−1

2 ]
(
δ
(2k+4)
L−M+M ′,0 − δ

(2k+4)
L+M−M ′,2k+2

)
,

Defining the parameters µ(L,M) := 1
2(L − M) ∈ Zk+2, and extending them additively to
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k n L′ L ∆m Iσσ(α′, α)

1 3 0 0 −3G2 + 3G

2 3 0 0 −6G3 + 6G2 + 2G − 2

3 0 1 −8G3 + 8G

3 1 1 −8G3 + 8G2 + 8G − 8

4 0 0 0 4G3 + 10G2 + 4G + 2

4 0 0 1 −2G3 + 4G2 − 2G − 4

4 0 0 2 −4G3 + 2G2 − 4G − 6

4 0 0 3 −2G3 + 4G2 − 2G − 4

4 0 1 0 8G2 + 8G

4 0 1 1 −8G3 − 8

4 0 1 2 −8G3 − 8

4 0 1 3 8G2 + 8G

4 1 1 0 8G3 + 16G2 + 8G

4 1 1 1 8G2 − 8

4 1 1 2 −8G3 − 8G − 16

4 1 1 3 8G2 − 8

3 3 0 0 −10G4 + 10G3 + 5G2 − 5

3 0 1 −15G4 + 15G2 + 5G − 5

3 1 1 −15G4 + 15G3 + 20G2 − 20

4 0 0 0 10G4 + 20G3 + 10G2 + 5G + 5

4 0 0 1 −5G4 + 5G3 − 5G2 − 10G − 10

4 0 0 2 −5G4 + 5G3 − 5G2 − 10G − 10

4 0 0 3 10G3 − 5G − 5

5 0 0 125G4 + 125G3 − 125G2 − 125G

5 0 1 125G4 + 250G3 − 250G − 125

5 1 1 375G4 + 250G3 − 250G2 − 375G

k (L′
i) L I idσ(α′, α)

1 (0, 0, 0) 0 −3G2 + 3

2 (0, 0, 0) 0 −4G3 + 4

(0, 0, 1) 0 −4G3 + 4G

(0, 1, 1) 0 −4G3 + 4G2 + 4G − 4

(1, 1, 1) 0 8G2 − 8

(0, 0, 0) 1 −4G2 + 4

(0, 0, 1) 1 −4G3 − 4G2 + 4G + 4

(0, 1, 1) 1 −8G3 + 8G

(1, 1, 1) 1 −8G3 + 8G2 + 8G − 8

(0, 0, 0, 0) 0 −4G3 + 4

(0, 0, 0, 1) 0 −4G3 + 4G

(0, 0, 1, 1) 0 −4G3 + 4G2 + 4G − 4

(0, 1, 1, 1) 0 8G2 − 8

(1, 1, 1, 1) 0 8G3 + 8G2 − 8G − 8

3 (0, 0, 0) 0 −5G4 + 5

(0, 0, 1) 0 −5G4 + 5G

(0, 1, 1) 0 −5G4 + 5G2 + 5G − 5

(1, 1, 1) 0 −5G4 + 5G3 + 10G2 − 10

(0, 0, 0) 1 −5G3 + 5

(0, 0, 1) 1 −5G4 − 5G3 + 5G + 5

(0, 1, 1) 1 −10G4 − 5G3 + 5G2 + 10G

(1, 1, 1) 1 −15G4 + 15G2 + 10G − 10

(0, 0, 0, 0) 0 −5G4 + 5

(0, 0, 0, 0, 0) 0 −25G4 + 25

(0, 0, 0, 0, 1) 0 −25G4 + 25G

(0, 0, 0, 1, 1) 0 −25G4 + 25G2 + 25G − 25

Table 1: Witten index Iσσ

Table 2: Witten index I id σ

tensor product boundary conditions, this expression can be written in terms of a (k + 2)×
(k + 2) shift matrix Gµ′µ = δ

(k+2)
µ−µ′+1,0 as

I idσ(L′
i = 0, L)µ′µ = (k + 2)[

n−1
2

](1 − G−L−1)µ′µ. (3.42)

This can of course be generalised to permutations consisting of N cycles of length nν and

labels Lν . The Witten indices for open strings between such a brane and a L′
i = 0 tensor

product brane are encoded in the matrix

I idσ =
N∏

ν=1

(k + 2)[
nν−1

2 ] (1 − G−Lν−1) . (3.43)

All the Witten indices can be written in terms of G, but the expressions for I id σ with

arbitrary L′
i and those for Iσ σ appear to be more involved than (3.42); see [22] for some

results in the quintic case. Nevertheless, even in the absence of a closed formula one can

extract each index in a straightforward manner from the topological partition functions

determined in section 3.3. In table 1 we list some Iσ σ for k = 1, 2, 3 and various values of

n, L′, L, m = T + 1
2(L−M) and ∆m = m−m′ (the latter being defined for even n only),

and in table 2 some I id σ for k = 1, 2, 3 and various n, L′
i and L.

4. Permutation branes and linear matrix factorisations

A tensor product M⊗n
k of N = 2 minimal models describes the critical behaviour of a

Landau-Ginzburg model with superpotential W = xd
1 + . . . + xd

n for d = k + 2, on a world-
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sheet without or with boundary. Therefore, one can expect that the CFT B-type branes

from above have some counterpart in the form of an LG boundary condition — more

concretely that the topological information of the CFT brane can be encoded in a matrix

factorisation of the LG potential W . Our proposal is that topological permutation branes

correspond to certain linear matrix factorisations.

4.1 Linear matrix factorisations

A linear matrix factorisation [26] of a homogeneous polynomial W of degree d in the

variables x1, . . . , xn is given by a set of d square matrices α0, . . . , αd−1 over C[x1, . . . , xn]

all of which are linear in the xi and satisfy

α0 α1 · · ·αd−1 = W 1 . (4.1)

From the αi, we can obtain two-factor matrix factorisations by choosing

p0 = απ(0) · · ·απ(`−1) and p1 = απ(`) · · ·απ(d−1) (4.2)

for 0 < ` < d − 1 and any cyclic permutation π of (0, . . . , d − 1).

A special class of linear matrix factorisations of W =
∑

xd
i have been constructed

explicitly by Backelin, Herzog and Sanders in [26]. For all homogeneous polynomials there

exists a unique (up to equivalence and cyclic permutation of the factors) indecomposable

linear matrix factorisation with the property

αt(xi)αt+1(xj) = ξαt(xj)αt+1(xi) i > j (4.3)

where αt(xi) is the matrix obtained from αt(x1, . . . , xn) by setting xj = 0 for j 6= i, and ξ

is a primitive dth root of unity.

In the case W = xd
1 + . . . xd

n, these factorisations consist of dγ ×dγ matrices, γ =
[

n−1
2

]
,

which can be written as

αi = x1 + ξi αd,n, (4.4)

where the αd,n can be defined by a recursion formula as follows: One introduces d × d

matrices

(ε1)ij = ξi−1 δi,j−1 , (ε2)ij = ξi−1 δi,j , (ε3)ij = δi,j−1 , (4.5)

where all Kronecker deltas are understood modulo d, as well as the number

µn =





1 d odd

η d even and
[

n−1
2

]
even

η−1 d even and
[

n−1
2

]
odd

, (4.6)

η being a primitive dth root of −1 with η2 = ξ. Using these, one defines

αd,1 = 0, αd,2 = µ2 x2, (4.7)

αd,n+2 = ε2 ⊗ αd,n + ε3 ⊗ µn+2 xn+1 1 + ε1 ⊗ xn+2 1, (4.8)

where the 1’s stand for identity matrices of the same size as αd,n.
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These special linear matrix factorisations have certain nice properties. They are ho-

mogeneous in the xi and indecomposable (i.e. not equivalent to direct sums). Moreover, it

is obvious from (4.4) that all the αi commute, which in particular means that they give rise

to matrix factorisations (4.2) not only for π cyclic but for all permutations π ∈ Sd. Thus,

for every proper subset I ⊂ {0, . . . , d − 1} we obtain the two-factor matrix factorisations

MI,Ic =

(
p0 =

∏

i∈I

αi, p1 =
∏

i∈Ic

αi

)
, (4.9)

where Ic = {0, . . . , d − 1}\I. For every ` = |I| these are
(d

`

)
ones.

Note, however, that not all of them have to be inequivalent. To determine, for given

number of variables n, the possible equivalences (as defined in (2.4)) between them, first

note that since the pi above are homogeneous, we can restrict to constant matrices Un, Vn

in eq. (2.4), and that two matrix factorisations associated to index sets I and I ′ as above

can be equivalent only if they are of the same degree, i.e. if |I| = |I ′|. The specific form

p0 = x
|I|
1 + . . . enforces Un = Vn, and exploiting (4.4) further one finds that U−1

n αd,nUn =

ξiαd,n has to hold for some integer i. Conjugation of a matrix factorisation (4.9) with such

a Un then just shifts the set I to I + i (understood modulo d).

To proceed, one observes that given Un for a fixed n, one obtains a matrix Un+2

conjugating αd,n+2 to ξiαd,n+2 by setting Un+2 = εi
2 ⊗ Un. Vice versa, using the explicit

form of the matrices εm and inspecting the recursion relation (4.8) for αd,n+2, one can show

that any Un+2 with the correct conjugation property can be formed from a Un in this way.

This allows us to list the classes of inequivalent matrix factorisations of the type (4.9):

For odd n > 1, one constructs possible equivalences Un starting from U1 = 1, which

obviously conjugates αd,1 = 0 to ξiαd,1. Therefore, in this case matrix factorisations (4.9)

defined by the sets I and I ′ are equivalent if and only if I ′ is a shift of I. On the other hand,

since αd,2 is a non-zero rank-1 matrix, there is no matrix U2 to non-trivially conjugate it.

Therefore, for even n all the factorisations (4.9) are inequivalent.

The case n = 1 provides the simplest example of linear factorisations, where αi = x1

for all i and we obtain the well-known d − 2 inequivalent factorisations of minimal model

potential W = xd
1, by grouping together ` factors x1 into p0 and the remaining d − ` into

p1. For simplicity, they will be denoted M`(x1) in the following.

The next example n = 2 is a little more interesting. Here, the linear matrices are given

by αi = x1 + µ2ξ
ix2, so that we obtain a matrix factorisation with p0 =

∏
i∈I(x1 + µ2ξ

ix2)

and p1 =
∏

i∈Ic(x1+µ2ξ
ix2) for every proper subset I ⊂ {0, . . . , d−1}. These factorisations

were introduced into the discussion of B-branes in LG models in [40] and then related to

CFT permutation branes with σ = (1 2) in [25]3.

For n > 2, the factorisations are much harder to treat ‘by hand’ since the size d[ n−1
2

]

of the matrices grows exponentially with n, which is why later on we will partly resort to

computer algebra programmes to perform some of the computations. Note that factori-

sations (4.9) for the case n = 3 and d = 3 have already occurred in the classification of

3Note however, that our factorisations differ from the ones used in [40, 25] by a shift x2 7→ ξ[
d+1

2 ]x2.
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maximal Cohen-Macaulay modules over the cone of the elliptic curve in [41, 42] and in the

discussion of D-branes on the elliptic curve in [31, 43].

Ultimately, we are interested in graded matrix factorisations

(P1, ρ1)
p1

À
p0

(P0, ρ0) , (4.10)

where apart from the matrix factorisation itself, Zd-representations ρi on the Pi are spec-

ified, which are compatible with the module structure (recall that R is graded) and the

maps pi.

For indecomposable matrix factorisations as in (4.9), there is only a choice of one

irreducible representation α of Zd, which determines ρ1, ρ0 completely, and we specify it

by setting the degree of the element 1 ∈ R ⊂ P0 = Rdγ
to be α ∈ Zk+2. We denote the

corresponding graded factorisations Mα.

4.2 Relation to permutation branes

We would now like to compare these linear matrix factorisations to the boundary states con-

structed in the previous sections. This will be done by analysing the open topological string

sectors on the matrix factorisation side, i.e. the graded Ext-groups ExtR(P,Q) between R-

modules P = coker p1, Q = coker q1 corresponding to matrix factorisations (p0, p1), (q0, q1),

and comparing them to the respective CFT-results obtained in section 3.3. Here, we will

consider the cases where these matrix factorisations are linear factorisations in n variables

or tensor products M⊗
L1,...,Ln

:= ML1(x1) ⊗ . . . ⊗ MLn(xn) of linear matrix factorisations

in one variable, cf. (2.5). The generalisation to tensor products of multi-variable linear

matrix factorisations is straightforward.

The Zd-representation of the linear factorisations ML(x) is specified by α = ρ0, and the

Zd-representations of Mα1
L1

(x1)⊗. . .⊗Mαn

Ln
(xn) only depends on

∑
i αi. We define M⊗α

L1,...,Ln

to be this tensor product factorisation for an arbitrary partition α =
∑

i αi. These tensor

product matrix factorisations reproduce the topological spectra of tensor product boundary

states (3.10) (a discussion of this can be found in [24]), the precise correspondence being

‖L1, . . . , Ln, S1, . . . , Sn,M =
∑

iLi − 2α〉〉idB 7−→ M⊗α
L1,...,Ln

. (4.11)

We propose the following correspondence between CFT permutation boundary states and

matrix factorisations:

n odd : ‖L,L−2α,S1=0,...,Sn=0〉〉σB 7−→ Mα
{0,...,L},{L+1,...,d−1} ,

n even : ‖L,L−2α,T=m−α,S1=0,...,Sn=0〉〉σB 7−→ Mα
{0,...,L}−m,{L+1,...,d−1}−m ,

(4.12)

where we use the notations of (4.9), and where elements in the sets I are understood to be

taken modulo d = k + 2.

Note that, for odd n, factorisations MI,Ic and MI+i,Ic+i are equivalent, whereas for

even n this is not the case and the respective shift m is determined by the boundary state

labels (L,M,T ) through m = T + 1
2(L − M).
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For the case n = 1, a single minimal model, this correspondence is of course well

known. We have spelled out the topological spectra in section 3.3, and the Ext-groups of

the corresponding matrix factorisations can easily be calculated, see e.g. [17, 23, 24].

For the next complicated case n = 2, the linear matrix factorisations still have rank

one, so the correspondence can still be checked by hand in a straightforward way. Ext-

groups involving two n = 2 linear factorisations or one linear and one tensor product

factorisation were first studied in [24]. The comparison with CFT permutation boundary

states for σ = (1 2) has been carried out in great detail in the recent work [25], so we refrain

from repeating the calculations here.

Whenever n > 2, the linear matrix factorisations involve higher rank matrices, and the

computation of the Ext-groups may become quite tedious. We do not yet have a general

derivation for all possible combinations of linear and tensor product factorisations. The

Ext-groups between Mα
I,Ic and M⊗,β

L1,L2=0,...,Ln=0 are calculated for arbitrary n and d in

section 4.3, exploiting certain constructions from homological algebra. The results are in

agreement with the correspondence proposed above.

To check agreement also for the other spectra (in particular the ones involving two

higher rank linear matrix factorisations), we resort to calculating the respective Ext-groups

on a case-by-case basis on the computer. For this purpose we used the computer algebra

program Macaulay2 [27]. Some of the results of these calculations are presented in sec-

tion 4.4 below. All tests show agreement with the CFT results obtained in section 3 and

confirm the correspondence (4.12).

Before we turn to Ext-groups, we can apply a simpler test to our correspondence

between linear matrix factorisations and boundary states, concerning the behaviour under

the charge symmetry Zn
d , whose generators act as gi : xj 7→ ξδij xj on the LG variables

and multiply CFT Ishibashi states by ξ
1
2
(mi+mi). From formulae (3.17), (3.23) for the

permutation boundary states, one sees that each gi shifts the T -label by (−1)i for n even,

while it leaves the boundary state labels invariant when n is odd. For the linear matrix

factorisations, on the other hand, gi induces a shift I 7→ I +(−1)i of the index set — which

is an equivalence for n odd, but changes the equivalence class of the matrix factorisation

for even n, in accordance with the proposed correspondence.

4.3 Calculation of some Ext-groups

Let M⊗
L1,...,Ln

= (q0, q1) be a tensor product matrix factorisation as above and MI,Ic =

(p0, p1) with |I| = L + 1 any linear matrix factorisation of degree L + 1. In this section,

we aim at calculating the groups ExtR(coker q1, coker p1). To do this, we use a relation

between the factorisation (q0, q1) and the module N = NL1,...,Ln := R/(xL1+1
1 , . . . , xLn+1

n ).

One way to establish this connection, namely by deconstructing the tensor product matrix

factorisation (q0, q1), is presented in appendix A. Here, we will take a more direct approach

and construct a free resolution of N which becomes 2-periodic after (n − 1) steps with

periodic part given by (q0, q1). In fact, this is a special case of a more general construction

due to Eisenbud [34]. For a commutative ring A and an ideal I, Eisenbud constructs a free

resolution of a B = A/I-module V out of an A-free resolution of V .
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In our case A = C[x1, . . . , xn], I = (W =
∑

i x
d
i ) and B = R. As A-free resolution of

N we use the Koszul complex of (xL1+1
1 , . . . , xLn+1

n ) which is a minimal A-free resolution

of N of length (n + 1)

0 −→ Kn
δ−→ Kn−1

δ−→ . . .
δ−→ K1

δ−→ K0 −→ N −→ 0 , (4.13)

where Ki = ΛiV is the ith exterior power of V = An with A-basis {e1, . . . , en} and co-

differential

δ ei1 ∧ · · · ∧ eip :=

p∑

j=1

(−1)j−1x
Lij

+1

ij
ei1 ∧ · · · ∧ eij−1 ∧ eij+1 · · · ∧ eip . (4.14)

To obtain an R-free resolution of N from this, one first introduces the maps σ : Ki −→ Ki+1

defined by

σ : ω 7−→
(

∑

i

xd−Li−1
i ei

)
∧ ω , (4.15)

which satisfy δσ + σδ = W . Furthermore let Ti := Ati for i ≥ 0 and define the operator

λ : Tn −→ Tn−1 by λ(tn) = tn−1 for n ≥ 1 (and λ := 0 on T0). Then we obtain the chain

of A-modules

. . . −→ Fl

eδ−→ Fl−1

eδ−→ . . .
eδ−→ F1

eδ−→ F0 , (4.16)

with

Fi =

[ i
2
]⊕

j=0

Ki−2j ⊗ Tj , δ̃ = δ ⊗ id + σ ⊗ λ . (4.17)

One has (δ̃)2 = W ⊗ t, and since F0 = K0, F1 = K1, we have F0/ im(δ̃) = N . Therefore,

tensoring the complex (4.16) with R, we obtain an R-free resolution . . . → F̃i → F̃i−1 →
. . . → F̃0 → N → 0 of N with F̃i = Fi ⊗ R. By construction this complex is 2-periodic

from position i = n.

Since the T -factors in the periodic part are redundant, the latter can be represented

as follows

Φj =
⊕

i

Λn−2i+jV , j ∈ {0, 1} , δ̂ = δ + σ : Φj −→ Φj+1 . (4.18)

Again (δ̂)2 = W , and Φ̃i = Φi ⊗ R, together with maps induced by δ̂, is the periodic part

of the R-free resolution F̃i of N .

Now we claim that this periodic part is isomorphic to the tensor product matrix fac-

torisation

M⊗
L1,...,Ln

=

(
Q1

q1

À
q0

Q0

)
. (4.19)

This can easily be shown by induction on n: Let A′ = C[x1, . . . , xn−1], Φi
′ and δ̂′ be defined

as above for the situation with (n−1) variables (x1, . . . , xn−1) and A′′ = C[xn], Φi
′′ and δ̂′′

be defined as above for the situation with one variable xn. Then Φ is given by the tensor

product of Φ′ and Φ′′: Φi
∼=

⊕
r+s+i∈2Z

Φ′
r ⊗A Φ′′

s and δ̂ = δ̂′⊗ id+ id⊗ δ̂′′. Thus, if (Φ′
i, δ̂

′)
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and (Φ′′
i, δ̂

′′) are isomorphic to the respective matrix factorisations, so is (Φi, δ̂). Therefore

we only have to show the statement for the case of one variable, where it is obvious:

Φ0
∼= Λ1Ae1

∼= C[x] , Φ1
∼= Λ0Ae1

∼= C[x] , (4.20)

δ = xL+1 : Φ0 → Φ1 , σ = xd−L−1 : Φ1 → Φ0 .

In particular, for a single variable we have Qi
∼= Φ̃i. This proves that the periodic part Φ̃i of

the R-free resolution F̃i of N is given by the respective tensor product matrix factorisation

M⊗
L1,...,Ln

. However, we need to treat the modules as graded ones, and there is a shift

of the Zd-grading between Qi and Φ̃i: Let us assume that the gradings α of the matrix

factorisations are zero. Then, in the one variable case Q0 has degree 0, whereas Φ̃0 has

degree L1 + 1 (since this is the degree of the basis vector e1, due to δ in (4.14) having

degree 0). Thus, taking the degrees into account, we find that the tensor product matrix

factorisation is isomorphic to the periodic part of the resolution of N(−∑
i(Li + 1)), N

with degree shifted by −∑
i(Li + 1).4 Let us for the moment abbreviate

∑
i(Li + 1) =: µ.

Then we have

ExtiR(coker q1,M) ∼= Exti+n
R (N,M)(µ) (4.21)

for all i > 0 and all R-modules M .

To calculate the right hand side of (4.21) for M = coker p1, we use the following fact

(see e.g. Lemma 3.1.16 in [44]): Let S be a graded ring, U and V be S-modules, and x ∈ S

a homogeneous element that annihilates U and is S- and V -regular5. Then one has

Exti+1
S (U, V ) ∼= ExtiS/(x)(U, V/xV )(− deg(x)) . (4.22)

Noting that (xL2+1
2 , . . . , xLn+1

n ) is an R- and coker p1-regular sequence6 in the annihilator

of N, we obtain

ExtiR(coker q1, coker p1) ∼= Exti+n
R

(
N, coker p1

)
(
∑

i(Li + 1)) (4.23)

∼= Exti+1

R/(x
L2+1
2 ,...,xLn+1

n )

(
N, coker p1/(x

L2+1
2 ,...,xLn+1

n ) coker p1

)
(L1 + 1) .

The right hand side is easy to determine in the case L2 = . . . = Ln = 0, in which

R/(x2, . . . , xn) ∼= C[x1]/(x
d
1) =: S ,

coker p1/(x2, . . . , xn) coker p1
∼=

(
S/xd−L−1

1 S
)dγ

,

N ∼= S/xL1+1
1 S , (4.24)

and N has the obvious S-free resolution

. . . −→ S
x

L1+1
1−→ S

x
d−L1−1
1−→ S

x
L1+1
1−→ S −→ C[x1]/(x

L1+1
1 ) −→ 0 , (4.25)

4If M =
L

n
Mn is a graded module and µ an integer, M(µ) is the module with M(µ)n := Mn−µ. (This

is not be confused with shifted complexes, usually denoted C[µ].) Shifting the degree of a module also

affects the degree of its Ext-groups, namely Ext(M(µ), N) = Ext(M, N)(−µ).
5An element x ∈ S is V -regular if xv = 0 for v ∈ V implies v = 0.
6For an R-module M , an M -regular sequence is a sequence (a1, . . . , an) in R such that a1 is M -regular

and aj+1 is (M/(a1, . . . , aj)M)-regular for all 1 ≤ j ≤ n.
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which can be used to obtain the respective Ext-groups

Ext2i+1
S (N,S/xd−L−1

1 S) ∼= x
max(0,L1−L)
1 C[x1]/(x

min(d−L−1,L1+1)
1 )(−L1−1) ,

Ext2i
S (N,S/xd−L−1

1 S) ∼= x
max(0,d−L−L1−2)
1 C[x1]/(x

min(d−L−1,d−L1−1)
1 ) ,

for i > 0. Putting everything together, we obtain

Ext2i
R(coker q1, coker p1) ∼= dγ

(
x

max(0,L1−L)
1 C[x1]/(x

min(d−L−1,L1+1)
1 )

)
,

Ext2i+1
R (coker q1, coker p1)

∼= dγ
(
x

max(0,d−L−L1−2)
1 C[x1]/(x

min(d−L−1,d−L1−1)
1 )(L1+1)

)
.

This agrees, via the correspondence (4.11), (4.12), precisely with the topological spec-

tra (3.40), (3.41), and in particular yields the correct Witten index (3.42).

For arbitrary L2, . . . , Ln, the computation of the right hand side of (4.23) is more

involved. Case-by-case checks using Macaulay2 however show agreement in these cases as

well.

4.4 Computer checks

As mentioned above, we have not yet been able to construct a rigorous proof for the

general correspondence (4.12). Therefore, we collect additional evidence for it based on

case-by-case calculations of the respective Ext-groups, using the computer algebra program

Macaulay2 [27].

Macaulay2 does exact calculations using rings which may be of the form

K[x1, . . . , xn]/I, where I is an ideal and K some field, which we define to be the field

extension Q(a), where a is a fundamental root of 1 if d is odd and of −1 if d is even. This

is done by setting K = Q[a]/(f(a)) for the appropriate polynomial f .

Macaulay2 has a built-in procedure to calculate the Ext-groups. The Zd-representa-

tions, which correspond to the degrees of the graded modules Pi, Qi and the maps between

them, are also calculated by Macaulay2.

Although we may use Macaulay2 to calculate the full algebra of the chiral rings,

for brevity we only present the calculation of the index I(P,Q) = dimExt2R(P,Q) −
dim Ext1R(P,Q) here. Our code can be found in appendix B.1. It calculates I(P,Q) for two

given graded matrix factorisations P and Q and expresses it in terms of the shift matrix

Gµ′µ, where here µ′ = α′ and µ = α specify the Zd-representations of P and Q respectively.

A few results are displayed in appendix B.2.

All our tests showed agreement of the topological spectra of permutation boundary

conditions on the one hand and the graded Ext-groups of the matrix factorisations cor-

responding to them via (4.11), (4.12) on the other. This is in particular the case for the

examples listed in tables 1 and 2.
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A. Deconstructing tensor product factorisations

Here we would like to give a slightly different derivation of (4.23). As in section 4.3,

we take M⊗
L1,...,Ln

= (q0, q1) to be a tensor product factorisation and MI,Ic = (p0, p1)

to be any linear matrix factorisation of degree |I| = L + 1. To calculate the modules

ExtR(coker q1, coker p1), we can make use of the tensor product structure of M⊗
L1,...,Ln

.

Namely,

q0 =

(
q′0 ⊗ 1 −1 ⊗ q′′1
1 ⊗ q′′0 q′1 ⊗ 1

)
, q1 =

(
q′1 ⊗ 1 1 ⊗ q′′1

−1 ⊗ q′′0 q′0 ⊗ 1

)
, (A.1)

where (
Q′

1

q′1
À
q′0

Q′
0

)
= M⊗

L1,...,Ln−1
(A.2)

is the tensor product factorisation of W ′(x1, . . . , xn−1) = xd
1 + . . . + xd

n−1 and (q′′0 =

xLn+1
n , q′′1 = xd−Ln−1) the factorisation of W ′′(xn) = xd

n. The Q′
i ⊗ Q′′

j are free, and the

long exact Ext-sequence obtained from

0 −→ Q′
1 ⊗ Q′′

0 −→ coker q0 −→ coker
(
idQ′

0
⊗ xLn+1

n , q′1 ⊗ idQ′′
1

)
−→ 0 (A.3)

gives rise to the following isomorphisms

ExtiR(coker q1, ·) ∼= Exti+1
R (coker q0, ·) (A.4)

∼= Exti+1
R

(
coker q′1/x

Ln+1
n coker q′1, ·

)
.

Following the degrees in all the steps, one sees that the degree of the third Ext in (A.4) is

shifted relative to the one of the Ext on the left hand side by Ln + 1. As in section 4.3, we

use the fact (see e.g. Lemma 3.1.16 in [44]) that for any ring S and any S-modules U and

V with a homogeneous x ∈ S that annihilates U and is R- and V -regular

Exti+1
S (U, V ) ∼= Exti

S/(x)(U, V/xV )(−deg(x)) . (A.5)

Since xLn+1
n is coker p1-regular this gives

ExtiR(coker q1, coker p1) (A.6)

∼= Exti
R/(xLn+1

n )

(
coker q′1

/
xLn+1

n coker q′1 , coker p1

/
xLn+1

n coker p1

)
.

Furthermore, coker q′1
/

xLn+1
n coker q′1

∼= coker q̂′1, where q̂′i are the induced maps between

the Qi/x
Ln+1
n Qi, which again have tensor product form (A.1). Because (xL2+1

2 , . . . , xLn+1
n )
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is an R- and coker p1-regular sequence, we therefore obtain (4.23) inductively:

ExtiR(coker q1, coker p1)

∼= Exti

R/(x
L2+1
2 ,...,xLn+1

n )

(
Ñ , coker p1

/
(x

L2+1
2 ,...,xLn+1

n ) coker p1

)

∼= Exti+1

R/(x
L2+1
2 ,...,xLn+1

n )

(
N, coker p1

/
(x

L2+1
2 ,...,xLn+1

n ) coker p1

)
(L1+1)

where N = R/(xL1+1
1 , . . . , xLn+1

n ) as in section 4.3, and where we have used

Ñ := R/(xd−L1−1
1 , xL2+1

2 , . . . , xLn+1
n ). This provides an alternative derivation of (4.23).

B. Calculations with Macaulay2

B.1 Code

The procedure init sets up the rings necessary for dealing with linear matrix factorisations

of W = xd
1 + . . . + xd

n.

-- Sets up necessary fields, rings.

init = (d,n) -> (

KK=QQ[G]/(1-G^d);

toField KK;

K=QQ[a]/((factors(1+(-a)^d))_0);

toField K;

K.isHomogeneous=true;

A=K[x_1 .. x_n];

f=sum apply(toList(x_1 .. x_n),y->y^d);

R=A/f;);

The procedure linmf creates linear matrix factorisations (4.9), where the first argument
is an ordered set of indices labelling the variables used in the factorisation, and the second
one is the set I defining it. For this procedure we also need some other functions.

-- Function subracts two sets.

subt = (I1,I2) -> (

I1=I2|I1;

I1=unique(I1);

I1=drop(I1,#I2);

return(I1));

-- Matrices \epsilon_1, \epsilon_2, \epsilon_3

e3mat = (R,d) -> (return(map(R^d,R^d,

(i,j)->(if j==(i+1)%d then 1 else 0))));

e1mat = (R,d,v) -> (return(map(R^d,R^d,

(i,j)->(if j==(i+1)%d then v^i else 0))));

e2mat = (R,d,v) -> (return(map(R^d,R^d,

(i,j)->(if i==j then v^i else 0))));

-- Inductively constructs \alpha matrices

nplustwo = (R,a,I,n,alpha) -> (

d:=degree R;

mu:=(if (even ((n-1)//2)) then a else a^(-1));
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if even d then

(R_(I_(n+1))*e1mat(R,d,a^2))**id_(source alpha)

+(mu*R_(I_n)*e3mat(R,d))**id_(source alpha)

+e2mat(R,d,a^2)**alpha

else

(R_(I_(n+1))*e1mat(R,d,a))**id_(source alpha)

+(R_(I_n)*e3mat(R,d))**id_(source alpha)

+e2mat(R,d,a)**alpha);

alphan = (R,a,I) -> (

mu:=(if (even ((#I-1)//2)) then a else a^(-1));

alpha:= (if (even (#I)) then matrix {{mu*R_(I_1)}}

else matrix {{0_R}});

m:=(if (even (#I)) then 0 else 1);

for i from (if (even (#I)) then 1 else 0) to floor((#I)/2)-1 do

alpha=nplustwo(R,a,I,2*i+m,alpha);

alpha);

-- Create linear mf

linmf = (I,J) -> (

d:=degree R;

a:=((coefficientRing R)_0)_R;

I=apply(I,i->i-1);

J=apply(J,i->i%d);

A=alphan(R,a,I);

N=rank source A;

b := if even d then

z -> (R_(I_0)**id_(R^(rank source A)) + a_R^(2*z) * A)

else

z -> (R_(I_0)**id_(R^(rank source A)) + a_R^z * A);

g=map(R^N,R^N**(R^{#J-d}),product apply(subt(toList(0..d-1),J),b));

f=map(source g, target g,(product apply(J,b)));

return(f,g));

The procedure tpmf creates tensor product matrix factorisations. The first argument is
again the ordered set of variable indices and the second one the ordered set of the respective
L-labels.

-- Creates the tensor product of two matrix factorisations

tp = (p,q) -> (

Rp0=target p_1;Rp1=source p_1;

Rq0=target q_1;Rq1=source q_1;

return(

map(p_0**id_(Rq0)|-id_(Rp1)**q_1)||(id_(Rp0)**q_0|p_1**id_(Rq1)),

map(p_1**id_(Rq0)|id_(Rp0)**q_1)||(-id_(Rp1)**q_0|p_0**id_(Rq1))));

-- Creates the tensor product of one-variable factorisations

tpmf = (I,J) -> (

d=degree R;

if #I==1 then tf=linmf(I,toList(0..J_0))

else tf=tp(tpmf(drop(I,-1),J),

linmf((I_(#I-1)..I_(#I-1)),toList(0..J_(#I-1))));

return(tf));
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The procedure deg calculates the bosonic and fermionic partition functions and ind the
index I(P,Q) between two matrix factorisations.

-- Calculates the degrees of the respective Ext-modules

deg = (n,p,q) -> (

n=-abs(n)%2+2;

Mp=coker p_1;

Mq=coker q_1;

emod=Ext^n(Mp,Mq);

e=if (dim emod!=0) then matrix {{}} else super basis emod;

ed=apply(numgens source e,i->((degree e_i)_0));

return(sum(ed,i->G^(i))));

-- Calculates the index I

ind = (p,q) -> (

return(deg(0,p,q)-deg(1,p,q)));

B.2 Results

In the following we demonstrate how to use the above code:

Macaulay 2, version 0.9.2

--Copyright 1993-2001, D. R. Grayson and M. E. Stillman

--Singular-Factory 1.3c, copyright 1993-2001, G.-M. Greuel, et al.

--Singular-Libfac 0.3.3, copyright 1996-2001, M. Messollen

i1 : load "linmf.m2"

--loaded linmf.m2

As an example, for d = 4 and n = 3, we set up a linear matrix factorisation M{0} and a

tensor product factorisation M⊗
0,1,2 and calculate indices I.

i2 : init(4,3)

i3 : p=linmf({1,2,3},{0});

i4 : p_0

o4 = {3} | x_1 ax_2+x_3 0 0 |

{3} | 0 x_1 ax_2+a2x_3 0 |

{3} | 0 0 x_1 ax_2-x_3 |

{3} | ax_2-a2x_3 0 0 x_1 |

4 4

o4 : Matrix R <--- R

i5 : q=tpmf({1,2,3},{0,1,1});

i6 : q_0

o6 = {3} | x_1 -x_2^2 -x_3^2 0 |

{2} | x_2^2 x_1^3 0 -x_3^2 |

{2} | x_3^2 0 x_1^3 x_2^2 |

{7} | 0 x_3^2 -x_2^2 x_1 |
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4 4

o6 : Matrix R <--- R

i7 : ind(p,p)

3 2

o7 = - 6G + 6G + 2G - 2

o7 : KK

i8 : ind(q,p)

3 2

o8 = - 4G + 4G + 4G - 4

o8 : KK

The indices calculated for these matrix factorisations agree via the correspondence (4.11),

(4.12) with the respective entries in tables 1, 2.
For even cycle length, e.g. n = 4, the factorisations MI not only depend on the cardi-

nality of I.

i9 : init(4,4)

i10 : p=linmf({1,2,3,4},{0});

i11 : q=linmf({1,2,3,4},{1});

i12 : ind(p,p)

3 2

o12 = 4G + 10G + 4G + 2

o12 : KK

i13 : ind(p,q)

3 2

o13 = - 2G + 4G - 2G - 4

o13 : KK

Upon comparison with tables 1 and 2 also these results agree with the correspondence

(4.12).

C. Linear matrix factorisations and the quintic

For the quintic hypersurface in P4, the charges of the minimal model tensor product branes

were calculated in [5]. The rank of the B-brane charge lattice is equal to N =
∑

i b
2i, where

bj are the Betti numbers of the underlying manifold; N = 4 for the quintic.
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Permutation M Charges Chern characters

D6 D4 D2 D0 rk ch1 ch2 ch3

(1)(2)(3)(4)(5) 0 1 0 0 0 1 0 0 0

2 −4 −1 −8 5 −4 1 5/2 5/6

4 6 3 19 −10 6 −3 −5/2 5/2

6 −4 −3 −14 10 −4 3 −5/2 −5/2

8 1 1 3 −5 1 −1 5/2 −5/6

(1)(2)(3)(45) 0 3 2 11 −6 3 −2 0 7/3

2 −1 −1 −3 4 −1 1 −5/2 −1/6

4 0 0 0 −1 0 0 0 −1

6 1 0 0 −1 1 0 0 −1

8 −3 −1 −8 4 −3 1 5/2 −1/6

(1)(2)(345) 0 0 0 −5 0 0 0 5 0

2 −5 0 −5 5 −5 0 5 5

4 10 5 35 −15 10 −5 −15/2 35/6

6 −5 −5 −20 15 −5 5 −15/2 −35/6

8 0 0 −5 −5 0 0 5 −5

(1)(23)(45) 0 0 0 −1 0 0 0 1 0

2 −1 0 −1 1 −1 0 1 1

4 2 1 7 −3 2 −1 −3/2 7/6

6 −1 −1 −4 3 −1 1 −3/2 −7/6

8 0 0 −1 −1 0 0 1 −1

(1)(2345) 0 5 4 22 −10 5 −4 0 20/3

2 0 −1 2 5 0 1 −15/2 5/6

4 0 −1 −3 0 0 1 −5/2 −25/6

6 0 −1 −8 0 0 1 5/2 −25/6

8 −5 −1 −13 5 −5 1 15/2 5/6

(12)(345) 0 5 4 22 −10 5 −4 0 20/3

2 0 −1 2 5 0 1 −15/2 5/6

4 0 −1 −3 0 0 1 −5/2 −25/6

6 0 −1 −8 0 0 1 5/2 −25/6

8 −5 −1 −13 5 −5 1 15/2 5/6

(12345) 0 −5 0 −25 0 −5 0 25 0

2 −5 5 15 0 −5 −5 25/2 125/6

4 20 10 80 −25 20 −10 −25 50/3

6 −5 −10 −30 25 −5 10 −25 −50/3

8 −5 −5 −40 0 −5 5 25/2 −125/6

Table 3: Charges and Chern characters of L = 0 permutation branes for the quintic, computed

from the Witten index with tensor product branes

Since the charges of the Li = 0 tensor product branes span the whole charge lattice

over Q in this case (they do not provide an integral basis), one can extract the charges

of the permutation branes from the Witten index I id σ between Li = 0 tensor product

branes and the permutation branes determined in (3.43): Let the columns of the matrix

Qid contain the charges of the Li = 0 tensor product branes7, and the “large volume

7The charge matrix Qid for a general Gepner model may be determined from the results of [45]
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intersection matrix” I in the charge basis be given by Iij = (−1)i+1δi,n−i+1. As long as Qid

has rank N (meaning that the tensor product branes span the whole charge lattice over

Q), the charges of σ-permutation branes are given by Qσ = JI idσ, where J(Qid)tI = 1.

By the method outlined above, we can compute all permutation brane charges from

the intersection form I id σ alone, for any model where the tensor product branes generate

the charge lattice over Q. The resulting charges for all B-type permutation branes with L-

labels 0 on the quintic are displayed in table 3. Note that if the charge lattice is generated

(over Q) by the tensor product branes, it easily follows from the form of I idσ given in (3.43)

that the charges of the permutation branes with L = 0 generate those of all permutation

branes.

Among the branes for the permutation (12)(3)(4)(5), one finds one with charges of

a (single) D0-brane. The absence of other charges (D2,4,6) for this boundary state was

already noted in [22, 46], where however the normalisation was not discussed. The cor-

rect normalisation was first obtained in [25], where it was noticed that the charges of

the (12)(3)(4)(5) permutation branes indeed generate the whole charge lattice (over the

integers).

Another interesting property to note is that, up to normalisation, the intersection

forms (3.43) only depend on the number of cycles of the respective permutation. The

normalisation is given by (k + 2)N with N =
∑

ν [
nν−1

2 ] depending on the cycle lengths nν

only. In particular the normalisation for the permutation branes (12)(345) and (1)(2345)

and therefore their charges are identical. Only for these permutation branes D4 branes

(without D6-brane charge) show up. None of these boundary states, however, is a “pure”

D4 brane, instead there is some admixture of D2-charge.
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